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Flow in a circular pipe rotating about its axis, at low Reynolds number, is investigated.
The simulation is performed by a finite difference scheme, second-order accurate in
space and in time. A non-uniform grid in the radial direction yields accurate solutions
with a reasonable number of grid points. The numerical method has been tested for
the non-rotating pipe in the limit ν → 0 to prove the energy conservation properties.
In the viscous case a grid refinement check has been performed and some conclusions
about drag reduction have been reached. The mean and turbulent quantities have
been compared with the numerical and experimental non-rotating pipe data of Eggels
et al. (1994a, b). When the pipe rotates, a degree of drag reduction is achieved in the
numerical simulations just as in the experiments. Through the visualization of the
vorticity field the drag reduction has been related to the modification of the vortical
structures near the wall. A comparison between the vorticity in the non-rotating
and in the high rotation case has shown a spiral motion leading to the transport of
streamwise vorticity far from the wall.

1. Introduction
The experimental study of turbulent circular pipe flow has attracted the interest

of several scholars, owing to the simplicity of the experimental setup. The flow
visualizations of Reynolds (1883), for example, can be considered a milestone for the
understanding of turbulent and transitional flows. Later, Laufer (1954) performed
measurements that, after many years, are still a good database of wall turbulence.
The flow in a pipe has been recently used to test new measurement techniques such as
PIV (particle image velocimetry) which permits the measurement of one component
of the instantaneous vorticity field. On the other hand, the numerical simulation of
turbulent pipe flow has received less interest than that in the plane channel because
of the numerical difficulties in treating the singularity at the axis. Recently a direct
simulation of turbulent pipe flow by finite differences has been performed by Eggels et
al. (1994b, hereafter referred to as EUW), and their results have been compared with
measurements performed by PIV and LDA (laser Doppler anemometry) and with
direct simulations of a plane channel by Kim, Moin & Moser (1987, hereafter referred
to as KMM) at the same Reτ. During the revision process of the present paper further
direct simulations of turbulent pipe flows have been performed by different numerical
methods such as full spectral by Zhang et al. (1994) and by B-splines and spectral
method by Loulou (1996).
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LES (large eddy simulations) and direct numerical simulations in a rotating pipe by
Eggels, Boersma & Nieuwstadt (1994a, hereafter referred to as EBN) were performed
for moderate N = Vθ0/Ub. This non-dimensional rotation number relates the two
relevant velocity scales in this flow: Vθ0, the velocity of the rotating wall, and
Ub = UP/2, the bulk velocity (UP is the centreline streamwise velocity of the laminar
Poiseuille flow). Just as in the experiments by Murakami & Kikuyama (1980) and
Hirai, Takagi & Matsumoto (1988), drag reduction was observed in these later studies.
The EBN simulation, however, did not consider high N where the experiments showed
the re-laminarization of the flow. The present study is devoted to the study of the
range of N not considered by EBN, that is the investigation of the flow field at high
N (N 6 2) but not so high as to include re-laminarization, and to the analysis of the
modifications of the near-wall vortical structures, for a more satisfactory explanation
of drag reduction. EBN uses the laboratory reference frame: then the wall of the pipe
rotates with the velocity Vθ0. In the present simulations, on the other hand, a reference
frame rotating with the wall has been chosen; thus the same boundary conditions as
in the non-rotating case apply but the Coriolis body force appears.

The effects of solid-body rotation on turbulence in a circular pipe have similarities
with three-dimensional boundary layers of practical importance, e.g. in swept wings
of airplanes. Furthermore, the rotating pipe is a very good candidate to help in
understanding swirling flows, which are important in applications connected with
combustion and aeroacoustics. A further motivation for performing direct simulations
at different values of the rotation number N is to provide a database useful for
developing more efficient Reynolds-averaged models. Hirai et al. (1988), in fact,
found that in the rotating pipe the standard k–ε turbulence model produces very
poor results and that it is necessary to use full Reynolds stress models for better
predictions. The database generated by the direct simulations permits the evaluation
of the budget of each Reynolds stress, which is necessary to test and validate new
closure models. The standard two-equation turbulence model did not give good
predictions for the rotating pipe flow; however, it is interesting to investigate whether
some of the new modifications introduced recently by Durbin (1991) and by Zeman
(1995) are valid for rotating wall flows. For example Durbin (1991) related the eddy
viscosity to the r.m.s. of the normal velocity rather than to the turbulent kinetic
energy. Preliminary calculations with the present database have shown that in the
non-rotating pipe the eddy viscosity relationship of Durbin (1991) gives the correct
wall damping without introducing any ad hoc assumption. However when this model
is applied to the rotating case, it does not account for the rotation effects in the outer
region. The effects of the body force then could be modelled as suggested by Zeman
(1995). Even though in this paper we do not describe the preliminary results that
we obtained on the validity of these new ideas on the one-point closure models for
wall-bounded rotating flows, we wish to point out that reliable Reynolds-averaged
models are of urgent need for industries working in combustion and turbo-machinery.
For this reason we are going to devote a future comprehensive study to this topic.

Since the near-wall vortical structures account for turbulence production as well
as for wall friction, in this study flow visualizations in rotating and in non-rotating
cases have been performed. These visualizations, together with profiles of high-order
statistics (skewness and flatness) and two-point correlations, allowed us to understand,
in a different way, the mechanism leading to drag reduction. The rotating pipe, in
fact, is a very simple configuration where the solid-body rotation is oriented in the
same direction as the streamwise vortices. From contour plots of the vorticity field
it has been observed that the wall vortices are tilted in the direction of rotation and
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that their centre is displaced far from the wall. The consequent effect is to reduce
the number and intensity of the ejection and sweep events. Joint p.d.f.s (probability
density functions) of the velocity fluctuations confirmed this picture and permitted us
to understand the formation of the turbulent stresses that are absent in non-rotating
pipes.

2. Equations and numerical scheme
In the three-dimensional case, expressing the Navier–Stokes equations in primitive

variables reduces the number of operations necessary to integrate the equations
numerically. In cylindrical coordinates, when the variables qθ = rvθ , qr = rvr , qz = vz ,
are introduced, the continuity equation becomes
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It is clear that the quantities qi do not all have the same physical dimensions; this
could be a matter of confusion. We wish to point out that these variables have
been introduced for numerical reasons only. As discussed later, the introduction of
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The equations non-dimensionalized by the centreline streamwise velocity UP of the
laminar Poiseuille flow and by the pipe radius R give the dimensionless numbers
Re = UPR/ν and N = 2ΩR/UP . In this paper rather than the Rossby number
Ro = UP/2ΩR usually used in geophysical problems, the rotation number N = 1/Ro
has been adopted. This choice has been dictated by the fact that N has been previously
used in studies of turbulent flows in rotating pipes. The mean pressure gradient in
the qz equation maintains the bulk velocity Ub =

∫
qzdV constant; it is evaluated

by integrating the discretized qz equation. ∂P/∂z is related to the mean wall friction

velocity uτ by uτ = (|∂P/∂z|/2)1/2.
In a finite difference scheme, the most compact form for the discrete div and grad

operators is achieved by locating the velocity components at the centre of the faces
and the pressure at the centre of the cell. The numerical scheme was described in
the paper by Verzicco & Orlandi (1996), where it was validated by two-dimensional,
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axisymmetric and three-dimensional flows. The check of the accurate treatment of the
singularity was done by letting a dipole move across the axis where large variations
of radial velocity occur. The simulation showed that the dipolar structure maintains
its shape and that in the inviscid case the energy was conserved.

Here we summarize the main features of the method. Viscous and advective terms
are discretized by centred second-order schemes. In the three-dimensional case, in
the limit of ν → 0, energy is conserved by the discretized equations. The system
of equations was solved by a fractional step method (Rai & Moin 1991). In a first
step a non-solenoidal velocity field q̂i is computed, and, if the pressure gradients at
the previous time step are retained, the boundary conditions for q̂i are simplified. A
scalar quantity Φ is introduced to project the non-solenoidal field onto a solenoidal
one. The large band matrix associated with the elliptic equation for Φ is reduced to
a tridiagonal matrix by periodic fast Fourier transforms in the azimuthal and in the
axial directions. This procedure is very efficient for obtaining the solenoidal velocity
within round-off errors. The amount of CPU time required to evaluate Φ is less than
the amount of CPU time necessary to solve for the non-solenoidal field. The updated
pressure is computed from the scalar Φ. A third order Runge–Kutta scheme, described
by Rai & Moin (1991), was used to advance in time through three sub-steps. The
viscous terms are treated implicitly by the Crank–Nicolson scheme.

In cylindrical coordinates, as mentioned before, the equations for the velocity
components are singular at r = 0. If staggered ‘fluxes’ are used, one can set qr = 0
at the centreline, and the qr equation can be discretized at the points i + 1

2
, 2, k + 1

2
without any approximation. The viscous terms in the radial direction at the first point
close to the wall for the qθ and qz equations have been approximated as in Rai &
Moin (1991) for the plane channel. The discretization of the qz and qθ equations at
the first grid position near the axis does not require any approximation for the radial
derivatives.

Periodicity has been imposed in the streamwise direction in a domain with length
LZ/R depending on the rotation number N. Finite differences have the advantage
of permitting the application of arbitrary coordinate transformations to cluster grid
points in regions of high gradients. An analytical transformation by the hyperbolic
tangent method permits the first grid point to be at a distance y+ < 1 from the
wall. This clustering is necessary to fully resolve the thin vortical layers near the
wall responsible for the wall friction and for the turbulence production. Although
the Reynolds number is low, the grid spacing in the central region of the pipe is not
small enough to consider the flow fully resolved. However the present simulations
have radial grid spacing close to that used in the full channel by KMM. Moreover it
is clear that the resolution for the circular pipe is better than in the plane channel,
since the polar coordinates reduce the size (r∆θ) of the physical grid near the axis.
The check of the numerical model is given in the Appendix, where also some physical
conclusions are drawn from the coarse simulations.

3. Results
When the wall of a pipe rotates there is some similarity with a three-dimensional

boundary layer, a flow with more practical applications. For the latter flow it is difficult
to design an experiment with boundary conditions perfectly reproducible in a direct
numerical simulation. On the other hand experiments on rotating pipes can be easily
realized and numerical simulations can be performed with one to one correspondence
between the geometrical conditions in the experiment. The detailed knowledge of this
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simple flow through experimental and numerical studies could help to understand the
effects of the modifications of the flow structures in more practical problems such
as the flow on swept wings. To see better the analogy between these two flows the
rotating pipe flow, in a reference frame rotating with the wall, can be thought of
as a flow where the Coriolis force acts as a local azimuthal pressure gradient that
affects the orientation, the spacing and the size of the streamwise vortices. Sendstad
& Moin (1992), by a direct simulation of a three-dimensional plane channel, observed
drag reduction and explained this phenomenon by the tilting of the streamwise
vortices by the mean spanwise pressure gradient. In the rotating pipe experiments by
Kikuyama, Murakami & Nishibon (1983a), Kikuyama et al. (1983b) and Reich &
Beer (1989), drag as well as turbulence reduction was measured as the rotation rate
was increased. At very high rotation speeds a sort of laminarization was also observed.
This condition is characterized by an averaged 〈vz〉 similar to the laminar Poiseuille
profile. In the experiments, time averages of the signals taken at a single point were
reported. On the other hand, in direct numerical simulations the averaging is done
in time and space as is described in the Appendix. The changes in the mean and
turbulent quantities in the experiments by Nishibori, Kikuyama & Murakami (1987)
and by Reich & Beer (1989) were explained by a general connection with the effects
of the centrifugal force, without mentioning any connection to the modifications of
the near-wall vortical structures. Our belief is that changes in turbulent wall flows
strongly depend on the modifications of the near wall vortical structures. Thus, as in
the case of Sendstadt & Moin (1992), we are using numerical direct simulations of
rotating pipes to visualize the near-wall vorticity field and to connect the changes in
the profiles of turbulent quantities to these visualizations.

To our knowledge the present study and that by EBN are the only direct simulation
studies at present available. EBN performed direct and large-eddy simulations at low
rotation rates, N = 0.31 and N = 0.62, and presented the profiles of second-order
turbulence statistics without investigating the modifications of the vortical structures
in the wall region. In the present study simulations have been performed in the
same range of N considered by Reich & Beer (1989) and Hirai et al. (1988). The
simulations were performed at a Reynolds number (Re) close to the smallest Re
in the experiment by Reich & Beer (1989). The Reynolds number is defined as
Re = UPR/ν = UbD/ν = 4900; the bulk velocity is Ub = 0.50UP , where UP is the
maximum value of the Poiseuille profile.

Choosing the length of the computational box for direct simulations of wall
turbulent flows is an important issue. EUW used axial two-point correlations of the
r.m.s. velocity components to show that for N = 0 a length of the pipe LZ = 10R
is sufficient to allow these correlations to drop to zero. In contrast, when the pipe
rotates, flow visualizations by Nishibori et al. (1987), at high rotation (N ≈ 2), showed
that in the central part of the pipe elongated coherent structures form and that, at
even higher rotation rates, the variations in the streamwise direction disappear, in
agreement with the Taylor–Proudman theorem. These flow visualizations forced us
to verify whether the Lz = 10R length is sufficient when the pipe is rotating. The
check was done at N = 2, the highest N in this study, and it was observed that
with Lz/R = 10 the turbulent stresses 〈v′zv′r〉 and 〈v′rv′θ〉 did not converge to the
statistical steady state after 200 time units. On the other hand, when the length was
increased to Lz/R = 15 and to Lz/R = 20, by keeping the same ∆z a convergence
to the statistical steady state was reached. Furthermore it has been observed that the
elongated structures in the central region of the pipe have long time scales, requiring
a longer time to reach statistical steady state than in the non-rotating case. Although
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N H(OF) H(MK) UCL(OF) UCL(RB) λ/λ0(OF) λ/λ0(RB) λ/λ0(KM)

0 1.637 1.625 1.306 1.270 1.00 1. 1.
0.5 1.747 1.687 1.440 1.350 0.8386 0.9230 0.8523
1.0 1.771 1.812 1.503 1.457 0.8290 0.7692 0.7035
2.0 1.913 1.969 1.660 1.689 0.8247 0.6670 0.5898

Table 1. Table of the values of the global quantities in the present simulation indicated by (OF) at
Re = 5000, and in the experiments by Reich & Beer (1989) (RB) at Re = 5000, by Murakami &
Kikuyama (1987) (MK) at Re = 10000 and by Kikuyama et al. (1983b) (KM) at Re = 7500.

at N < 2 a length Lz/R = 10 is sufficient, the simulations were performed with the
same length used for N = 2 (Lz/R = 15).

Before investigating the radial profiles of the mean and turbulent quantities, a
comparison between some of the global quantities in the present simulations and
in the experiments is shown in table 1. The results by Reich & Beer (1989) are
at Re = 5000 close to the present one, while the results by Nishibori et al. (1987)
were at Re = 10000 and those by Kikuyama et al. (1983b) at Re = 7500 and at
Lz/D = 120. The shape factor H , if we introduce Vz = 〈vz〉/UCL, is defined as
H =

∫
(1− Vz)dr/

∫
Vz(1− Vz)dr with UCL = 〈vz〉CL. In table 1 H and UCL/Ub from

the direct simulation agree satisfactorily well with the experiments. However, the wall
friction (λ = 8(uτ/Ub)

2) reduction in the present simulations is lower than that in the
experiments, showing a negligible dependence on N for N > 0.5. The low Re of the
simulations could be a cause of this difference since the experiments by Kikuyama et
al. (1983b) show a reduced dependence of the friction coefficients when the Reynolds
number decreases. However, the Reich & Beer (1989) experiment was at the same
Reynolds number; thus, a further reason for the difference could be the influence
of the entrance conditions on the measurements. This is a more plausible reason
because Murakami & Kikuyama (1980) showed that the loss coefficient depends on
the axial location of the measurements. Perhaps Lz/D = 120, the location where
Reich & Beer took the measurements, is still not sufficient to achieve the condition
of fully developed rotating pipe flow. In addition it should be taken into account
that the direct simulations are performed at constant mass flow rate (Ub = 0.5); in
the experiment, on the other hand, usually the head of the pump is kept constant.
Thus the flow conditions are different, and this could produce effects on the friction
coefficients. Clearly this should be tested by a comparison between simulations at
constant mass flow rate and at constant uτ. This will be done in the near future in
a more applied study, devoted also to study the real energy saving in rotating pipes.
The present study, devoted to the physics of the near-wall turbulence, focuses on
the important issue of predicting and explaining drag reduction in rotating pipes.
We have carefully checked that the results do not depend on the length of the
computational domain in z and on the grid resolution. As a further comment we
believe that if the numerics had an effect on λ, it should be largest at N = 0, when
the spatial gradients of the velocity field are greater than for N > 0. In contrast,
at N = 0 the simulation predicts λ = 0.0385 in good agreement with the theoretical
value λ = 0.0378, evaluated by the relationship λ = 0.3164Re−0.25.

In figure 1 the mean velocity profiles in wall units show the drag reduction through
the upward shifting of the log law. As usual y+ indicates the distance from the
wall in wall units. In the pipe it is defined as y+ = (1 − r)uτ/ν. The tendency
towards laminarization is better shown by the profiles scaled with the bulk velocity.
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Figure 1. Averaged streamwise velocity profiles in wall units for , N = 0.5; ,
N = 1.0; , N = 2.0; 4 , N = 0; × , EUW.

Figure 2 shows that the axial velocity profiles approach the Poiseuille profile when N
increases, in agreement with the experimental observations that at N = 3 an almost
parabolic profile was achieved. While for N < 1 the size of the buffer region remains
unchanged, at N = 2 the buffer region almost completely disappears, and a first log
region appears just after the viscous region, corresponding to the region where the
turbulent energy is constant. Figure 2 shows that the axial velocity profiles, scaled
with the bulk velocity, have at yd ≈ 0.40 almost the same value 〈vz〉/Ub = 1.14. A
similar behaviour was observed in the experiments by Reich & Beer (1989) and in
the simulation by EBN. The present yd agrees with the value yd = 0.37 found by
Kikuyama et al. (1983a) and differs from yd = 0.33 and yd = 0.3 found respectively
by Reich & Beer (1989) and by EBN. Figure 2 shows that the variation with N of
our profiles is in qualitative agreement with those measured by Reich & Beer (1989).
A better agreement is obtained by scaling the experimental profiles at N > 0 with
the ratio between the centreline velocity of the experiment and of the simulation at
N = 0. Since the Reynolds number is the same the reason for the difference between
the profiles, at N = 0, of the numerical simulation and of Reich & Beer (1989) should
be the effect of the entrance conditions in the experiment.

A mathematical explanation of the occurrence of the fixed point in figure 2 was
not found, but it was observed that close to the location where the profiles of 〈vz〉
collapse there is a point with 〈ωz〉 = 0. Figure 3 shows that in the profile of 〈ωz〉
there are two zero points, and they depend on the mean profile of r〈vθ〉 (figure 4a).
EBN proved, from the equation of 〈vθ〉, that near the wall the tangential velocity
must be proportional to r and that in the inner field it is proportional to r2. The first
crossing, close to y = 0, occurs where 〈vθ〉 passes from a linear to a parabolic profile.
The second crossing, from the vorticity definition, coincides with the minimum of
r〈vθ〉 as shown in figure 4(a). When 〈vθ〉 is scaled with the wall rotational velocity
Vθ0, Reich & Beer (1989) claimed that it is independent of N and of Re. The same
outcome was found by Kikuyama et al. (1983a, b) in their numerous experiments. In
our simulations, performed in the rotating frame, to have the same scaling as in the
experiment the linear solid-body rotation velocity Ωr must be added to 〈vθ〉. Moreover,
the dimensional 〈vθ〉 should be scaled with the centreline velocity. By this operation
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Figure 2. Averaged streamwise velocity profiles scaled with the bulk velocity Ub: , N = 0.5;
, N = 1.0; , N = 2.0; 4 , N = 0; × , EUW. Closed symbols are from experiments by

Reich & Beer (1989) at Re = 5000: • , N = 0; , N = 0.5; N, N = 1; H, N = 2.

the profiles of 〈wθ〉 = 〈vθ〉UCL2/N + r in figure 4(b) show a slight dependence on N.
In figure 4(b) the values by Kikuyama et al. (1983b) at Re = 10000 reported in the
paper by Hirai et al. (1988) are included. We took the data from Hirai et al.’s paper
because these were given at each N separately. In the original paper by Kikuyama
et al. (1983b) it was difficult to read the data, and those at N = 0.5 were given
only for a few radial locations. A very careful observation of the data at N = 0.5,
however, shows that the symbols do not exactly coincide with those at N = 1. The
values of Reich & Beer (1989) were not included since these coincided exactly with
the theoretical curve 〈wθ〉/Vθ0 = r2. The present 〈wθ〉 profiles do not collapse on
a single curve, as in Reich & Beer (1989); however, they are in a good agreement
with the Kikuyama et al. data. Also in the direct simulation at two close values of
N EBN found an imperfect collapse of the profiles. On the other hand, the EBN
profiles collapsed in the higher Reynolds number LES simulations at N = 0.71. From
these considerations, we could conjecture that the discrepancies with the experimental
results of Reich & Beer (1989) could be due, once more, to the effects of the entrance
condition and not to Re, since in the experiments independence of Re was found. We
checked that the lack of similarity in figure 4(b) did not depend on the insufficient
time integration to reach the steady state. Moreover, the averages were done with
fields with Qθ =

∫
qθdV constant. The independence of the radial resolution was also

investigated: simulations with 49 and 97 points in the radial directions produced the
same 〈wθ〉 profiles. The check that our 〈vθ〉 at the steady state satisfies the relationship

〈v′θv′r〉 −
1

Re
r
∂〈vθ〉/r
∂r

= 0 (3.1)
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Figure 3. Mean streamwise vorticity profiles: , N = 0; , N = 0.5; , N = 1.0;
, N = 2.0.

was done, confirming the assertion in EBN that near the wall the 〈vθ〉 profile must
go to zero with a zero slope. Equation (3.1) shows that if the theoretical relationship
〈wθ〉/Vθ0 = r2 holds even close to the wall, 〈v′θv′r〉 is different from zero at the wall.
The Kikuyama et al. (1983b) measurements at N = 0.5 show for y < 0.2 a tendency
towards a linear profile, even if the measurement point closest to the wall is on the
theoretical curve. Our belief is that measurements near the wall are difficult when the
wall rotates, as is confirmed by some inconsistency of the data which does not appear
in the central region. Inside the channel at N = 0.5, our data and that of Kikuyama
et al. (1983b) do not coincide with the theoretical curve. By increasing N our results
smoothly approach the theoretical curve while the Kikuyama et al. data at N = 1
and N = 2 lie on the theoretical curve. The smooth increase of 〈wθ〉/Vθ0 with N of
the numerical simulation can be explained as a viscous correction that is greater for
smaller N.

The influence of the rotation on the second-order turbulence statistics was in-
vestigated by EBN. They found that the largest effects occur on the streamwise
r.m.s. velocity; this should be expected, since the rotation affects the production of
turbulent energy, which near the wall is mainly due to 〈v′zv′z〉. Moreover according
to the Taylor–Proudman theorem, a rotating flow tends to reduce the gradients in
the direction of the rotation vector. This reduction, however, is not as strong as in
homogeneous flows because of the turbulence production near the wall. The r.m.s.
velocity profiles, scaled by the centreline velocity, in figure 5(a–c) show a greater
reduction of the streamwise r.m.s. than of the other two components. Figure 5(a)
shows that for N 6 1 the peak of 〈v′2z 〉1/2 is reduced but an increase in the central part
of the pipe is observed. On the other hand for N = 2 a flat region is achieved with a
value comparable to that of 〈v′2θ 〉1/2. In the experiment by Nishibori et al. (1987) the
measurements of v′z at N > 0 showed strong dependence on the distance from the
inlet section; however, although not showing any flattening the reduction of the wall
peak was observed. In the experiment, the authors presented profiles at Re = 3× 104

at three streamwise locations, and the reduction with N of the r.m.s. component in
the last station agrees with our results. Since direct simulations at higher Re are not
affordable, we conjecture that this flattening is a low-Reynolds-number effect. This
is realistic, since even in the KMM simulations, a strong interaction between the
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Figure 4. Radial profiles of (a) swirl and (b) radial velocity in the laboratory reference frame
, N = 0.5; , N = 1.0; , N = 2.0; , theoretical r2; ◦ , N = 0.5; 4 , N = 1,
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wall and the centre of the channel occurs. In the present case, as is shown later, the
near-wall vortical structures increase their size as N increases and thus the turbulence
level increases far from the wall. In the Appendix it is shown that this flattening does
not depend on the resolution or on the length of the pipe.

As found by EBN, the 〈v′2θ 〉1/2 peak does not change appreciably with N. They
found that going from N = 0 to N = 0.32 the peak increases weakly in the direct
simulation at Reτ = 180 and decreases in the LES at Reτ = 1050. Our simulation
shows an irrelevant decrease for N < 1, an increase for N = 1, and for N = 2 values
close to those for N = 1 with a tendency to produce, as for v′z r.m.s., profiles with a
flat region in a large portion of the pipe. Although there are differences between the
present and the EBN simulations, both show that near the wall the rotation has less
influence on 〈v′2θ 〉 than on 〈v′2z 〉. The peak of the radial velocity r.m.s. decreases near
the wall for N < 1, as shown by the LES in EBN; for N > 1 the peak is translated
towards the centre of the pipe. We could not find other results in the literature that
show this effect at high rotation. The overall picture derived from figure 5(a–c) is that
there is a tendency towards isotropy of the three velocity fluctuations.

In the non-rotating pipe 〈v′rv′z〉 is the only stress; it is reduced when the pipe rotates,
as measured by Kikuyama et al. (1983a, b). Figure 5(d) shows that near the wall this
stress, in wall units, for N 6 1 decreases with N and then increases for N = 2. At
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Figure 5. RMS profiles of (a) azimuthal, (b) radial and (c) axial velocity components; (d) 〈v′zv′r〉
Reynolds stress in wall units, total stress: , N = 0; , N = 2; , N = 0.5; ,
N = 1.0; , N = 2.0; 4 , N = 0; × , EUW.

N = 2, on the other hand, 〈v′rv′z〉+ decreases in the central region in accordance with
the increase of the viscous stress. In figure 5(d) the total stress, that is the sum of
the viscous and the turbulent stress, is given for the two extreme cases N = 0 and
N = 2. The linear profile in the non-rotating case was obtained by averaging 25 fields
separated from each other by 2 time units. At N = 2, as shown in the experiments and
in the present simulations, elongated structures form in the central region of the pipe.
These structures are associated with long-time scales that induce slow variations in
the Reynolds stress that require more time to reach the statistical steady state. Near
the wall, at N = 2, the convergence of the turbulent stresses to the steady state is
comparable to that at N = 0. In fact, in the rotating and in the non-rotating cases the
eddies in this region have short time scales. Because of the slow motion of the large
helical scales at N = 2 the statistics were evaluated with 65 fields. The simulations,
moreover, have shown that the statistical steady state is achieved only when Lz/R is
long enough to capture the full length of the large scales in the central region.

When the pipe rotates the other two Reynolds stress become comparable to 〈v′rv′z〉
with high values of 〈v′θv′z〉 close to the rotating wall as figure 6(a) shows. Figure 6(a)
also shows that for 0 < N < 1 the largest variations occur near the wall, while, on
the other hand, the level is negligible in the central part for low N and becomes
appreciable at high N. The radial oscillations of 〈v′zv′θ〉 at high N are due to the large-
scale structures in the central part of the pipe, which contribute to 〈ωz〉 (figure 3).
When the rotation decreases, the strength of these large scales is weaker and the
magnitude of 〈v′zv′θ〉 is negligible. The intense peak of 〈v′zv′θ〉 near the wall is related to
the tilting of the near-wall vortical structures that increases the amount of correlation
between v′z and v′θ , as is shown below by the joint p.d.f. Figure 6(b) shows that the
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Figure 6. Profiles of Reynolds stresses: , N = 0; , N = 0.5; , N = 1.0;
, N = 2.0.

profiles of 〈v′θv′r〉 are approximately linear in the central region of the pipe and, as
previously mentioned, this agrees with the parabolic profile of 〈vθ〉. However the slope
is not proportional to N to give the perfect collapse of all the curves in figure 4(b).
This lack of proportionality with N was found for other quantities: in fact Kikuyama
et al. (1983b) reported the maximum centreline velocity as a function of N showing
that between N = 1 and N = 3 it grows linearly, while at N = 0.5 it deviates from
the linear slope. If the theoretical profile 〈wθ〉 = r2 were to hold up to the wall, 〈v′θv′r〉
should be linear and have a value there different from zero. This is of course not
possible; therefore, close to the wall the stress 〈v′θv′r〉 decrease and consequently 〈wθ〉,
as shown in figure 4(b), differs from the theoretical curve. At y = 0.05 the 〈v′θv′r〉
stresses scale with N and this linear scaling explains why in Figure 4(b) near the wall
the 〈wθ〉 profiles collapse onto a single curve.

In three-dimensional boundary layers Schwarz & Bradshaw (1994) evaluated the
structure parameter a1 = [〈u′v′〉2 +〈v′w′〉2]1/2/q2 to characterize the flow. This quantity
can be regarded as the efficiency of the eddies in producing turbulent shear stresses for
a given amount of turbulence energy. Experimentally, they found that for y/δ99 < 0.2,
a1 decreases moderately with the increase of cross-flow, while in the outer half of the
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boundary layer, a1 increases. In the case of the rotating pipe flow the parameter a1,
defined as a1 = [〈v′rv′z〉2+〈v′rv′θ〉2+〈v′zv′θ〉2]1/2/q2, decreases in the centre of the pipe with
the increase of the rotation and increases near the wall (figure 7). The increase near
the wall is due to the diminishing of turbulent energy and to the increase of 〈v′θv′z〉.
The value at N = 0 at the centre of the pipe is slightly greater than the experimental
value a1 = 0.14 found in the zero-pressure-gradient turbulent boundary layer. By
comparing the present results with those of three-dimensional boundary layers we
could draw the conclusion that the changes of a1 are ascribed to the sideways tilting
of the wall structures by the cross-flow. In the boundary layers this effect is limited
to a narrow layer, while in the pipe it extends throughout the whole flow. Only at
high rotation speed does the wall region of the pipe show an increase similar to
that measured in the outer region of the three-dimensional boundary layer. This fact
is related to modifications of the vortical structures by the cross-flow that reduce
the production of turbulent energy. These changes in the second-order statistics in
a pipe with the rotation rate make it a very challenging case to validate new ideas
in Reynolds-averaged turbulent models for complex flows. In particular, this case is
very useful for improving turbulence models related to swirling flows, which are very
important in the design of combustion chambers.

High-order statistics such as skewness and flatness give a further indication of the
intermittent character of the wall region. In the plane channel KMM have shown
that the flatness and the skewness of the normal velocity have variations larger than
the other two components, thus only the profiles of 〈v′3r 〉/〈v′2r 〉3/2 and 〈v′4r 〉/〈v′2r 〉2 are
presented. In our convention vr > 0 is directed towards the wall; to have the same
notation as the plane channel, the quantity wr = −vr must be used, so that the usual
meaning for the ejection and sweep events is maintained. Figure 8(a) shows that the
skewness of w′r has the zero crossing at yd ≈ 0.25 for N = 0 in very good agreement
with the value obtained by EUW in the pipe and with that by KMM in the plane
channel. For N < 1 the absolute values of the peak near the wall increase with N, but
the zero-crossing position does not change appreciably. On the other hand, for N > 1
the position of zero crossing moves towards the wall and a minimum on the profile
occurs close to the zero crossing. These large variations of the skewness with the
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rotation rate are a further indication that changes of the orientation of the vortical
structures occur near the wall, and that the inclination is responsible for the events
producing the stresses 〈v′rv′θ〉 and 〈v′zv′θ〉.

As in the KMM simulation, in contrast to the experiments, very high values for
the flatness of v′r occur at the wall (figure 8b). There are minor differences between
the present and the EUW results at N = 0, for y < 0.05, but in the remaining part
of the pipe the agreement is good. When the pipe rotates, very close to the wall the
flatness increases up to N = 1 and decreases for N = 2. The increase of 〈v′4〉/〈v′2〉2
at y = 0.2 is an indication of large regions of low fluctuations and of narrow zones
with high fluctuations levels, as contours of ω′r in the (z, θ)-planes show (figure 10a).
The flatness of v′z (not reported in this paper) shows a continuous increase with N,
indicating that near the wall the flow becomes more intermittent with the rotation.
The more intermittent nature of the wall region at N = 2 is displayed by a comparison
between contour plots, in z, θ sections at yd = 0.079, of radial vorticity at N = 0
(figure 9a) and at N = 2 (figure 10a). When the pipe does not rotate the thin layers
of ω′r represent the high- and low-speed streaks that contribute to the turbulent drag
and to the 〈v′rv′z〉 Reynolds stress. The positive values (solid lines in figure 9a) indicate
the passage from a low- to a high-speed streak. Contour plots, at the same yd, of v′z in
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Figure 9. Contour plots at y+ = 10 for N = 0 of (a) ω′r , with ∆ω′r = 0.75 (b) v′z , with ∆v′z = 0.05,
(c) joint p.d.f. of v′z and w′r = −v′r scaled by the local r.m.s. value, contours level ∆ = 0.0002.

figure 9(b) show that the regions of negative fluctuations are longer than those with
positive values. This behaviour was also observed in a plane channel by Sendstadt &
Moin (1992). Contours of v′r , not presented here, show that in correspondence with
v′z > 0 (v′z < 0) there are more points with v′r < 0 (v′r > 0), than points of fluctuations
of equal sign. In the bursting process, these sweep and ejection events lie in the fourth
and second quadrants of the joint p.d.f. shown in figure 9(c). These are the events
contributing mainly to 〈v′rv′z〉. The results for the non-rotating pipe confirm that the
near-wall flow in the pipe behaves like the near-wall flow in a plane channel. The
joint p.d.f.s for the pipe were not evaluated by EUW and even if these had not
differed from those in KMM, we are presenting them because the close comparison
with those at N = 2 permits a better comprehension of the changes in the bursting
process with rotation.

In figure 10(a–c) the same quantities as before are given for the simulation at N = 2.
Figure 10(a) shows that the regions of high ω′r are tilted and reduced in number. The
regions of v′z < 0 for N = 2 are also longer than those of v′z > 0. The greater spacing
between the layers is an indication of wider streaks (figure 10b) that together with a
weakening of the vorticity levels cause the drag reduction. The joint p.d.f. contours
in figure 10(c) show that the rotation reduces the number of sweeps and ejections
and that the contribution of events with equal sign of fluctuations increases. Since
the joint p.d.f.s are evaluated for the fluctuations normalized by the r.m.s. it is clear
that the sweeps are associated with a smaller in-rush velocity than that for N = 0.
This plot explains why 〈v′rv′z〉 is not greatly modified by rotation, as was shown in
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Figure 10. Contour plots at y+ = 10 for N = 2 of (a) ω′r , with ∆ω′r = 0.75 (b) v′z , with ∆v′z = 0.05,
(c) joint p.d.f. of v′z and w′r = −v′r scaled by the local r.m.s. value, contours level ∆ = 0.0002.

figure 5(b). The largest contributions to the negative 〈w′rv′z〉 come from the second
(ejections) and fourth (sweeps) quadrants both in the rotating and non-rotating pipe.
The reduced number of regions of strong ω′r indicates a more intermittent flow, as
was shown by the flatness profile in figure 8(b). The analysis of a single realization of
the flow gives a qualitative picture of the streak spacing.

In the rotating and in the non-rotating case the two-point correlations in the
stream-wise direction, at yd = 0.70, of the fluctuating velocities give a quantitative
measure of the size of the turbulence scales in the central part of the pipe and show
whether the simulation is performed in a pipe of sufficient length. The correlations
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Figure 11. Axial two-point correlations for N = 2.0: , ◦ , i = θ; , 4 , i = r; , ,
i = z; (a) at y = 0.70, (b) at y = 0.08 (symbols Lz = 15R, lines Lz = 20R).

in the non-rotating case are not presented since these agree with those presented in
EUW. To investigate the dependence of the spanwise correlation on the length of the
pipe these have been evaluated by a set of fields calculated for Lz/R = 15 and for
Lz/R = 20. The location of the minima at the end of the pipe length in figure 11(a)
indicates that, at high N, at the centre there are very elongated structures spanning
the full pipe. These structures were visualized by Nishibori et al. (1987). The two-point
correlations explain why no convergence of the statistical quantities to a steady state
was found when a length Lz/R = 10 was used. In fact this length was not sufficient to
let the elongated structure in figure 10(d) develop. The two-point correlations near the
wall (figure 11b), at N = 2 and yd = 0.08, show that near the wall the structures are
also correlated along the full extent of the pipe in accordance with the visualizations
in figure 10(e). Figure 11(b) furthermore shows that the scales associated with v′r are
the smallest and that the largest are those associated with v′z .

Two-point velocity correlations in the azimuthal directions furnish quantitative
information on the streak spacing. The simulations show that at N = 2 these
correlations are independent of the length of the pipe, thus these have been plotted
for the simulation at Lz/R = 15 at yd = 0.08, which approximately corresponds to
the distance of maximum turbulent energy production. The correlations for N = 0
do not differ from those in the plane channel and are shown in this paper (figure
12a) because a direct comparison with those at N = 2 permits a better understanding
of the modifications of the vortical structures. At N = 0 figure 12(a) shows that
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Figure 12. Spanwise two-point correlations at y = 0.078: , i = θ; , i = r; ,
i = z; (a) N = 0; (b) N = 2.0.

the minimum of the correlation of the axial velocity occurs at λ+ = r+θ = 50, the
characteristic streak spacing of 100 wall units. Figure 12(a,b) shows that from N = 0
to N = 2 the locations of the minima of the correlation of v′z , v

′
θ and v′r increase

by different amounts; this fact indicates that the increase is not related only to the
growth of r+, which depends on the decrease of uτ. The modifications of the two-point
correlations are thus connected to the modifications of the vortical structures in the
wall region. From figures 9(b), and 10(e) (which contain information related to a
single realization), and from figures 12(a, b) (which include a large number of events),
it is clearly shown that widening and tilting of the wall streaks occurs in the rotating
case.

The tilting of the vortical structures was shown by Sendstad & Moin (1992) in
a plane channel with spanwise mean pressure gradient. From these two different
simulations we can speculate that when the positive and negative streaks are not
aligned with the streamwise velocity, the regeneration process is reduced. In the
present case a helical motion lifts the vortical structures away from the wall producing
a reduced amount of opposite-sign vorticity at the wall. These thin layers, the
precursors of the streamwise vortices, roll up and increase in strength by vortex
stretching. This mechanism was clearly described for the plane channel with and
without lateral pressure gradient by Sendstad & Moin (1992). We wish to point
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Figure 13. Contour plots of (a) v′z and (b) v′r scaled by the r.m.s. value at each r for N = 0 in a
vertical section; contour level ∆ = 0.5.

out that, as in the channel with lateral pressure gradient, in the rotating pipe the
mechanism of regeneration remains, but it is largely reduced. These changes on the
near-wall vortical structures produce an effect on the distribution of v′z . Figure 10(b),
in fact, shows that for N = 2, the number of contour levels of v′z is less than that for
N = 0 (figure 9b), and this explains why in figure 5(c) the peak of the r.m.s. of v′z
decreases with N.

In the rotating case the simulations predicted a decrease in the skin friction and
in the magnitude of the Reynolds stress; the physical explanation is obtained by
comparing, at N = 0 and N = 2, contour plots on (r, θ)-planes of the same quantities
as in the joint p.d.f.s of figure 9(c) and figure 10(c). These visualizations are a
further tool to explain the effects of the rotation on the turbulence profiles shown
in figure 5. The contours of v′z and v′r shown in figures 13(a,b) indicate in a different
way the same outcome as from the joint p.d.f. in figure 9(c): that for N = 0, in
the region close to the wall, these fluctuations are highly correlated, and that the
events producing an in-rush of fluid towards the wall are more intense. In figure 13(b)
v′r divided by its r.m.s. is plotted. Positive values represent parcels of fluid moving
towards the wall. Since the numerator and the denominator both tend to zero while



62 P. Orlandi and M. Fatica

(a)

(b)

Figure 14. Contour plots of (a) v′z and (b) v′r scaled by the r.m.s value at each r for N = 2, in a
vertical section; contour level ∆ = 0.5.

approaching the wall, figure 13(b) gives the impression of a free-slip wall. When the
pipe rotates, figure 10(c) shows that the number of intense sweeps is reduced; in fact
the number of locations at yd = 0.079 with high values of v′r > 0 is reduced as the
comparison between figure 14(b) and 13(b) shows. At N = 2, these plots could give
an erroneous impression that the fluctuations did not increase in the central part of
the pipe in contrast to the profiles in figure 5(b, c). Contours, not scaled by the local
r.m.s., as in figure 5(b, c), reveal an increase of the turbulent intensities in the central
region. Figure 14(a) gives a clear picture that the helical motion is responsible for the
transport of the fluctuations from the wall to the central region.

In the non-rotating pipe, the Reynolds stresses 〈v′θv′z〉 and 〈v′θv′r〉 are zero because
of symmetry. This also means that in the joint p.d.f. of v′z and v′θ (not reported here)
there is a cancellation of the contributions from the first and fourth quadrants. The
same cancellations between the second and third quadrants occurs, but the number
of events in the first and fourth quadrants, at y+ ≈ 10, exceeds the number of events
in the other quadrants; the opposite occurs in the central part of the pipe. This
difference between the wall and the central part is congruent with the change of sign
of the skewness of v′z . The direct simulations permit us to investigate which events
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contribute to the 〈v′θv′z〉 and 〈v′θv′r〉 stresses when the symmetry is disrupted by the
pipe rotation. At N = 2 near the wall (figure 6a) the stress 〈v′θv′z〉 is greater than 〈v′zv′r〉
(figure 5d); this stress is positive, thus the first and third quadrants give the largest
contribution. In addition the joint p.d.f. in figure 15(a) shows that the events in the
third quadrant give a greater contribution than those in the first quadrant. This means
that the rotation increases the correlation between low-speed streaks and regions of
negative v′θ . This plot has been evaluated at the same location as that of figure 10(f)
implying that there is an azimuthal fluctuation in the direction of rotation associated
to the in-rush events and vice versa when there is an ejection. This occurrence is also
displayed in figure 15(b) showing a more isotropic joint p.d.f. Therefore it is clear
why 〈v′θv′r〉 is smaller (figure 6b) than 〈v′zv′r〉 (figure 5d). We would like to point out
that the sign of 〈v′θv′r〉 depends on the direction of the rotation.

Robinson (1991) in an analysis of the turbulent boundary layers of Spalart (1988),
and of the plane channel flow of KMM noticed a strong correspondence between
low-pressure regions and streamwise vortices. Kim (1989), on the other hand, through
the joint p.d.f between pressure and streamwise vorticity, found that peaks of ω′z
are associated with large negative fluctuations of pressure but not vice versa. In the
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present simulation at N = 0 figure 16(a) shows that near the wall what was observed
by Kim (1989) is reproduced. We would like to point out that the correlation between
p′ and ω′z is better observed in the region far from the wall. In the rotating case the
joint p.d.f, in figure 16(b), shows that high values of positive pressure are associated
with negative streamwise vorticity and vice versa. This change of sign of the extreme
values of the pressure with the streamwise vorticity indicates that the shear prevails
over the vorticity. The correlation between p′ and ω′z is elucidated in figure 17 and
figure 18, by contour plots of these quantities, scaled with the local r.m.s. value, in
the same horizontal section as figures 9(a, b) and 10(a, b). Moreover, the comparison
between visualizations of ω′z in the rotating and in the non-rotating case shows that
the external rotation increases the axial correlation of the streamwise vorticity. In
order to study the vorticity dynamics subjected to background rotation, the rotating
pipe is very interesting since it is a flow with streamwise vorticity that is generated
in the wall layer by vortex stretching and tilting oriented along the rotation axis.
Figure 17 shows contour plots of the quantities in figure 16 for N = 0 and figure 18
for N = 2. In the rotating case the pressure, an indicator of the total vorticity field,
highlights structures larger than those in the non-rotating case, that is the pressure
shows that the rotation has produced an amalgamation of small structures. This
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Figure 17. Contour plots of (a) p′ and (b) ω′z scaled by the r.m.s. value at each r for N = 0, in a
horizontal section at y+ = 10; contour level ∆ = 0.75.

amalgamation indicates an inverse energy cascade reminiscent of two-dimensional
turbulence. The contour levels of ω′z for N = 0 (figure 17b) are closer to each other
than for N = 2 (figure 18b) producing a stronger transport of v′z towards the wall,
thus creating more friction.

4. Conclusions
The present study was devoted to the direct numerical simulation of a turbulent

pipe flow with and without rotation. The numerical method was tested in the non-
rotating case by comparing the results with the validated simulations by EUW. The
grid refinement check showed that using second-order finite differences, even on
coarse meshes, turbulence is sustained and the results are reasonable good. This
confirms the present tendency to pay a large amount of attention to developing
subgrid models for large-eddy simulations by finite differences, a method of wider
applicability than spectral models. From these simulations we understood also that
there is a strong interaction between numerical and subgrid dissipation, as confirmed
by specific studies devoted to this topic such as that by Kravchenko & Moin (1997).
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Figure 18. Contour plots of (a) p′ and (b) ω′z scaled by the r.m.s. value at each r for N = 2, in a
horizontal section at y+ = 10; contour level ∆ = 0.75.

The simulations in the rotating case were done in the same range of rotation rates
considered in the experiments by Reich & Beer (1989), which are greater than those in
the direct simulations by EBN. As in the experiments, it was found that the rotation
produces drag reduction and that at high rotation rates the mean streamwise velocity
tends to the parabolic laminar Poiseuille profile. From the experiments, Nishibori et
al. (1987) and Reich & Beer (1989) claimed that the drag reduction and the turbulence
suppression was caused by the centrifugal force of the swirling flow component; the
present simulations added a further contribution by relating the drag reduction to
the modifications of the near-wall vortical structures. A confirmation that the drag
reduction is related to the widening of the wall streaks was obtained by two-point
velocity correlations in the azimuthal directions. Through flow visualizations of the
vorticity field and joint p.d.f.s the changes caused by the rotation on the second-
and higher-order statistics were explained. Contour plots of the fluctuating pressure
at high rotation have shown the tendency to form large scales with high correlation
in the direction of the rotation, in accordance to the Taylor–Proudman theorem.
This tendency is characterized by a strong reduction of v′z and ω′z and by the large
values of contours of pressure fluctuations. The present simulations have the required
accuracy in the near-wall region to permit us to draw solid physical conclusions
about the mechanism producing the drag reduction. A check of the importance of
the computational length in the streamwise direction was done by simulations with
constant spatial resolution and different axial length.

Our near-future goal is to apply the present numerical method to LES in the same
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range of rotation rates and to check whether the dynamic model is appropriate.
The hope that this new subgrid model is suitable for rotating flows is based on
the satisfactory results recently obtained by Squires & Piomelli (1993) in isotropic
turbulence subjected to solid-body rotation. Since the dynamic model gave satisfactory
predictions in the plane channel we think that the rotating pipe is a very challenging
case to check whether this model could be applied to more complex and realistic
situations as those occurring in swirling combustion chambers. Hirai et al. (1988),
in fact, proved that the conventional k–ε turbulence model does not work for the
rotating pipe. By the present validated direct simulations, although limited to low
Reynolds number, we have created a database which could furnish the Reynolds
stress budgets, a useful tool to develop new ideas on one-point closure models.

Finally, the rotating pipe flow is interesting because the rotation is directed in the
same direction as the streamwise vorticity. The same amount of positive and negative
ωz is generated at the wall without rotation, while the present simulations show that
the solid-body rotation produces a positive mean streamwise vorticity near the wall.
This occurrence is related to the longer survival of vorticity of the same sign as that of
the external rotation. This aspect of vorticity dynamics in the presence of solid-body
rotation was investigated by Bidokhti & Tritton (1992) in a mixing layer where the
external rotation is aligned with the main vorticity and normal to the rib vortices.
The rotating pipe flow, on the other hand, has the mean vorticity 〈ωθ〉 orthogonal
to the external rotation and the near-wall streamwise vortices, analogous to the rib
vortices, aligned with the external rotation, so that it is a case complementary to the
mixing layer. The analysis of the differences and the analogies in these two cases could
bring a better comprehension of the vorticity dynamics in the presence of background
rotation.

This study was initiated while P.O. was visiting the Centre of Turbulence Research.
The fruitful discussions with the associated fellows there are appreciated. We wish to
thank Dr Eggels who furnished the first draft of his paper on the same topic and
the data of the direct simulation of the non-rotating pipe. Particular thanks goes to
Ugo Piomelli who carefully criticized the first draft of the paper. The set of coarse
simulations was performed on the CRAY YMP2E of the Centro di Supercalcolo di
Torino. The most refined simulations were performed on the NASA Ames computers
and on the SP2 IBM at CINECA in Casalecchio. On using the SP2 one of us (M.F.)
was helped by Dr M. Briscolini of IBM. The support by grants of MURST are also
acknowledged. Finally, we give special thanks to two anonymous referees for their
useful comments.

Appendix. Accuracy checks
Finite differences permit us in a very simple way to handle free-slip and no-slip

boundary conditions and thus to verify whether the non-uniform spacing maintains
the energy conservation in the inviscid limit. This check was done by performing a
coarse simulation (65×39×33) for ν = 0 and with a free-slip boundary. The calculation
was started from a viscous unresolved simulation at Re = 4900, corresponding to
Reτ ≈ 180, and it was left free to evolve to a statistical steady state. In this case, the
mean pressure gradient drops to zero and the mean axial velocity profile tends to be
constant across the pipe. Figure 19(a) shows that the total energy remains constant
and that the total turbulent energy decreases due to the reduction of turbulent
energy production caused by the diminishing of the mean shear. Figure 19(b), in
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Figure 19. (a) Time history of total ( ) and turbulent ( ) energies; (b) profiles of the
normal stresses , i = z; , i = r; , i = θ.

addition, shows that the radial profiles of each of the normal turbulent stresses reach
the condition of almost isotropic turbulence within a large part of the pipe. The
vr = 0 assumption is the cause of the anisotropy near the free-slip wall. This check
proves that second-order centred finite differences, for the nonlinear terms, do not
introduce any spurious numerical viscosity, which for positive values could lead to
unphysical dissipation and for negative values to unphysical production of energy.
The influence of aliasing errors on finite-difference methods is not as important as on
pseudo-spectral methods. Kravchenko & Moin (1997) have analysed these errors for
different schemes for the nonlinear terms and they have shown that aliasing errors
are negligible when staggered variables are used. However we wish to recall that
truncation and aliasing errors are very important for large-eddy simulations but not
for direct numerical simulations, where all the significant scales must be resolved.

A test of the accuracy of the viscous-term discretization and of the entire numerical
method was performed by a grid refinement check. In the non-rotating case this check
was done starting from a very coarse grid (32×38×16) and then doubling the number
of points in the θ- and z-directions until reaching the grid 128 × 96 × 128. A non-
uniform grid in r with an enhanced clustering near the wall located the first point at
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Figure 20. Mean axial velocity profiles in wall coordinates: , log law (1/0.41) ln y+ + 5.5;
, 33 × 39 × 17; , 65 × 39 × 33; , 65 × 39 × 65; , 129 × 39 × 65; N,

129× 49× 129; +, 129× 97× 257; EUW.

y+ = 0.5. The present results are compared with those by EUW, which were validated
by comparison with PIV and LDA measurements and with the direct simulation
of KMM in a plane channel. For all grids figures 20(a, b) shows that some sort of
logarithmic profile is achieved, but the values of the von Kármán constant depend
on the resolution. In figure 20(a) the full profile is shown, while in figure 20(b) only
the part within the buffer and the log regions is shown to emphasize the differences
with the log law 〈v+

z 〉 = (1/0.41) ln y+ + 5.5 and with the numerical results by EUW.
By 〈〉 we denote space averages in the two homogeneous directions z and θ and time
averages every 10 time steps for a long physical time. The averaging time depends
on the case studied: for N = 0 the averages were performed for 200 time units,
and this time was found to be sufficient. The 128 × 48 × 128 simulation, which uses
fewer points than the EUW simulation, is in very good agreement with their results.
The good agreement is due to the non-uniform grid, which allows 48 points to be
sufficient to locate the first point closer to the wall than the 96 equidistant points in
EUW.

From physical arguments changes in the log law should be expected: the decrease of
the number of points causes a worse resolution of the near-wall streamwise vortices.



70 P. Orlandi and M. Fatica

(a) (b)
0.06

0.04

0.02

0 0.2 0.4 0.6 0.8 1.0
y

©
v′

2 õª
1/

2 /
U

C
L

0.06

0.04

0.02

0

©
v′

2 rª
1/

2 /
U

C
L

0.2 0.4 0.6 0.8 1.0
y

(c)

0 0.2 0.4 0.6 0.8 1.0
y

0.15

0.10

0.05

0.20

(d)
0.0025

0.0020

0.0015

0.0010

0.0005

0 0.2 0.4 0.6 0.8 1.0
y

–©
v′ r

 v
′ zª

/U
2 C

L
©

v′
z2 ª

1/
2 /

©
U

C
L
ª

Figure 21. Second-order turbulence statistics: , 33× 39× 17; , 65× 39× 33; ,
65× 39× 65; , 129× 39× 65; N, 129× 49× 129; ×, 129× 97× 257 EUW.

Since these vortices are responsible for the turbulent wall friction, a decrease in their
strength produces a drag reduction. This effect is reflected in figure 21 by the r.m.s.
profiles, showing a decrease of the vr and vθ r.m.s., and an increase of the vz r.m.s.
The increase of the fluctuations in the streamwise direction is due to a reduction
on the mean velocity centreline. Figure 21(a–d) shows that the refinement in θ has a
greater influence than that in z. The physical reason is that the better resolution of the
azimuthal gradients of ωz gives a better rendering of the sweep and ejection events
and hence greater values of 〈ωθ〉. The observation that streamwise vorticity produces
the high- and low-speed streaks, and thus the turbulent wall friction, was made by
KMM based on observations made in a plane channel direct simulation, and was
also proved by Orlandi & Jimenez (1994) by a two-dimensional model. The results
in figure 21 show that the refinement in the axial direction is less important; in fact,
the profiles using 128× 48× 64 and using 128× 48× 128 points do not differ largely
from those by EUW using 128× 96× 256 points. In figure 21(d) the Reynolds stress
profiles of 〈v′rv′z〉 confirm that the coarsest simulation gives a sort of drag reduction.
The reduction of 〈v′rv′z〉 is mainly due to a decrease of v′r , as in all situations in which
a drag reduction is achieved.

For the rotating case the check of the numerics was performed only at N = 2.
In the rotating case the check must be done not only on the resolution but also on
the length of the computational domain in the streamwise direction. In fact, if the
pipe was too short it could affect the long helical structures near the wall and at
the centre of pipe. The near-wall structures are smaller than those at the centre and
have shorter time scales. The statistical steady state is obtained by averaging a few
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Figure 22. Second-order turbulence statistics: , 129 × 49 × 129, Lz = 10R; ,
129× 97× 129, Lz = 10R; , 129× 129× 129, Lz = 20R; , 257× 129× 129, Lz = 20R;

, 257× 97× 129, Lz = 15R.

realizations of the flow near the wall, while it is necessary to average over a larger
number of realizations to have satisfactory profiles in the central part. From these
arguments it should be expected that the grid resolution and the pipe length should
affect more the central than the wall region. We performed simulations on a pipe of
length Lz = 10R using grids 128 × 48 × 128 and 128 × 96 × 128 to check the radial
resolution. Since a non-uniform grid was used this check is not so important, as was
shown for N = 0. Two further simulations with Lz = 20R using 128× 128× 128 and
128× 128× 256 points were performed to investigate the effects of the length and the
grid resolution in the streamwise direction. From these simulations it was decided to
use the simulation at N = 2 with a grid 128× 96× 257 in a pipe of length Lz = 15R
to analyse the results. With Lz = 15R and with 257 points in z, the resolution in
wall units is ∆z+ = 9.5, small enough to consider the present simulation as a fully
direct numerical simulation even in the central region. Figure 22(a–d) shows that
when the pipe is rotating the length of the pipe is an important parameter in the
direct simulations.

The final comment on the grid refinement checks is that very coarse calculations
in three dimensions give acceptable results that reproduce some of the aspects of
wall turbulent flows without introducing any subgrid scale (s.g.s) model. Although a
very coarse simulation without an s.g.s. model could be more or less useful, from a
physical point of view accurate LES simulations are always better. However, since
this numerical viscosity produces energy spectra decreasing reasonably well at high
wavenumbers, it is possible that these truncation errors affect the flow in the same
manner as s.g.s. models do.
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